Distributed Autonomous Online Learning: Regrets and Intrinsic Privacy-Preserving Properties
نویسندگان
چکیده
منابع مشابه
A centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملPrivacy - Preserving Distributed Computation
P4P: A Practical Framework for Privacy-Preserving Distributed Computation
متن کاملPrivacy-preserving distributed clustering
Clustering is a very important tool in data mining and is widely used in on-line services for medical, financial and social environments. The main goal in clustering is to create sets of similar objects in a data set. The data set to be used for clustering can be owned by a single entity, or in some cases, information from different databases is pooled to enrich the data so that the merged data...
متن کاملEXpectation Propagation LOgistic REgRession (EXPLORER): Distributed privacy-preserving online model learning
We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the sam...
متن کاملPrivacy-Preserving Bayesian Network Learning From Heterogeneous Distributed Data
In this paper, we propose a post randomization technique to learn a Bayesian network (BN) from distributed heterogeneous data, in a privacy sensitive fashion. In this case, two or more parties own sensitive data but want to learn a Bayesian network from the combined data. We consider both structure and parameter learning for the BN. The only required information from the data set is a set of su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2013
ISSN: 1041-4347
DOI: 10.1109/tkde.2012.191